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Abstract: Background: Developing patient-centric baseline standards that enable the detection of
clinically significant outlier gene products on a genome-scale remains an unaddressed challenge
required for advancing personalized medicine beyond the small pools of subjects implied by “preci-
sion medicine”. This manuscript proposes a novel approach for reference standard development
to evaluate the accuracy of single-subject analyses of transcriptomes and offers extensions into
proteomes and metabolomes. In evaluation frameworks for which the distributional assumptions
of statistical testing imperfectly model genome dynamics of gene products, artefacts and biases are
confounded with authentic signals. Model confirmation biases escalate when studies use the same
analytical methods in the discovery sets and reference standards. In such studies, replicated biases are
confounded with measures of accuracy. We hypothesized that developing method-agnostic reference
standards would reduce such replication biases. We propose to evaluate discovery methods with a
reference standard derived from a consensus of analytical methods distinct from the discovery one to
minimize statistical artefact biases. Our methods involve thresholding effect-size and expression-level
filtering of results to improve consensus between analytical methods. We developed and released
an R package “referenceNof1” to facilitate the construction of robust reference standards. Results:
Since RNA-Seq data analysis methods often rely on binomial and negative binomial assumptions to
non-parametric analyses, the differences create statistical noise and make the reference standards
method dependent. In our experimental design, the accuracy of 30 distinct combinations of fold
changes (FC) and expression counts (hereinafter “expression”) were determined for five types of
RNA analyses in two different datasets. This design was applied to two distinct datasets: Breast
cancer cell lines and a yeast study with isogenic biological replicates in two experimental condi-
tions. Furthermore, the reference standard (RS) comprised all RNA analytical methods with the
exception of the method testing accuracy. To mitigate biases towards a specific analytical method,
the pairwise Jaccard Concordance Index between observed results of distinct analytical methods
were calculated for optimization. Optimization through thresholding effect-size and expression-level
reduced the greatest discordances between distinct methods’ analytical results and resulted in a 65%
increase in concordance. Conclusions: We have demonstrated that comparing accuracies of different
single-subject analysis methods for clinical optimization in transcriptomics requires a new evaluation
framework. Reliable and robust reference standards, independent of the evaluated method, can be
obtained under a limited number of parameter combinations: Fold change (FC) ranges thresholds,
expression level cutoffs, and exclusion of the tested method from the RS development process. When
applying anticonservative reference standard frameworks (e.g., using the same method for RS de-
velopment and prediction), most of the concordant signal between prediction and Gold Standard
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(GS) cannot be confirmed by other methods, which we conclude as biased results. Statistical tests
to determine DEGs from a single-subject study generate many biased results requiring subsequent
filtering to increase reliability. Conventional single-subject studies pertain to one or a few patient’s
measures over time and require a substantial conceptual framework extension to address the numer-
ous measures in genome-wide analyses of gene products. The proposed referenceNof1 framework
addresses some of the inherent challenges for improving transcriptome scale single-subject analyses
by providing a robust approach to constructing reference standards.

Keywords: single-subject studies; personalized medicine; precision medicine; reference standards;
gold standards; biomarkers; open-source

1. Introduction

From both biological and statistical standpoints, reproducibility and accuracy of results
are crucial to clinical utility of genome-wide Omics studies. A 2016 survey by Nature [1]
indicated that 70% of researchers failed to replicate other scientists’ studies, with more
than half failing to replicate their own. While the accuracy and reproducibility of an Omics
signal in multi-subject studies can be assessed by comparing subjects in distinct datasets,
evaluating the accuracy of a single-subject study (SSS) remains challenging. In principle,
conventional statistics deriving dispersion parameters (e.g., variance) across samples can
be applied to single-subject studies using multiple repeated measures in each compared
condition (e.g., t-test) or many measures over time (e.g., time series) [2,3]. However, this
strategy is often prohibitively expensive, wastes valuable clinical specimens, and is rate-
limiting. The foundation for single-subject studies [4,5] highlights the challenges and issues
associated with inferential statistics on cohorts of size N = 1. Beyond the multiple repeated
measures paradigm of conventional statistics, we and others have proposed new analytical
methods designed to identify an effect size and statistical significance for a subject from
an Omics sample per condition without replicates [6–9] (in this study specifically with
transcriptomics). A reference standard consisting of the other subjects’ genomes is sufficient
to qualify the frequency of a genetic variant or mutation in static DNA. However, when
this strategy is applied to proteins or transcripts, it does not inform on the differences
observed between an individual’s gene products expression and that of a group. Are these
differences attributable to a normal physiological adaption or to a pathological response
to environmental factors unique to this individual (e.g., a combination of medication)?
Furthermore, how can studies best capture these differences? This manuscript presents
an alternative approach to constructing method-independent reference standards that
address inherent challenges in transcriptome scale single-subject studies. A proposed
framework improves upon the evaluation of software tools and algorithms for differential
gene expression in one subject between two sampling conditions, in absence of replicate
measures per condition. Such single-subject study Omics designs are more affordable and
practical for clinical settings than repeated measures in one condition. Generally, they
provide a more interpretable effect size and p-value at a single subject than comparing an
individual against a cohort. We contrast and compare this new evaluation framework in
transcriptomics to previous ones in terms of the accuracy of results beyond the previously
proposed “naïve replication” and quantify biases stemming from previous evaluations’
anticonservative assumptions frameworks.

In large-scale biological data science studies, “gold standards” produced via biological
validation is rate-limiting and generally unfeasible at the Omics scale. Data scientists ad-
dress this limitation with computational “reference standards” as a proxy for conventional
biological gold standards. The most rigorous reference standards employ (i) independent
analytics and (ii) independent samples (datasets) from predictions. However, these two
conditions are not always feasible in single-subject studies. Furthermore, most approaches
generating reference standards from an Omics dataset rely heavily on p-values, despite
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recommendations from statistician scholars for effect-size informed approaches to address
the limitations of null-hypothesis significance testing [10,11]. We synthesize and incor-
porate these notions into a set of standard operating procedures for the development of
reliable reference standards in transcriptomes, as a foundation for evaluating big data
science reproducibility studies.

This manuscript focuses on improving the accuracy of single-subject studies evalua-
tions, beyond “naïve reproducibility” of results and other biases described in Table 1. In
a prior study of 5 distinct RNA analysis methods in multiple isogenic datasets [12], we
described a new method that combines the inconsistent signal between analytical methods
that the original study did not address [13]. This inconsistency (arising from distributional
differences) required methods, such as DESeq [14], to impose a false discovery rate (FDR)
cutoff of 0.001 to detect ~3000 DEGs, while DEGseq [15] required a cutoff of FDR < 3.6 ×
10−12 for the same number of DEGs, with 2039 overlapping transcripts. Conversely, we also
found that applying the same FDR cutoff (i.e., 0.001) resulted in methods producing various
predictions (i.e., 3200 vs. ~9000 with approximately 3000 overlapping transcripts, leaving
~6000 transcripts with a conflicting, unaddressed signal). Anticonservative isomorphic
evaluations (Table 1) have been the conventional standard for evaluating DEG analytics
in isogenic conditions (e.g., cell lines or inbred animal models), the closest datasets to
single-subject studies [13,16]. Such evaluations propose a naïve replication of results using
the anticonservative assumption that the same DEG analytics can be employed to create
the reference standard and the predictions. In a prior study, we constructed an ensemble
learner [12] to develop reference standards, where the ensemble approach resolves conflict-
ing biomarker prediction, uses no statistical assumptions, and removes anti-conservative
isomorphic evaluations. Our prior study demonstrated that in situations comprising high
technical noise, an ensemble learner maximizes the stability of a reference standard and the
DEG predictions [12]. However, they increase the “black-box” aspect of the data analysis
and muddle its interpretability.

Table 1. Current limitations with biased gold standards in transcriptomic gene expression in single-subject studies.

Issue Description

Statistical assumptions bias

When conditions of applicability (e.g., homoscedasticity assumptions)
of the theoretical distribution of the underlying analytics are
overlooked and unapplicable, prioritized results contain biases (false
positives and false negatives) inherent to modeling inadequacies.

Analytical bias and systematic errors

Studies that use the same analytical method for the prediction
calculation as for the reference standard construction incorrectly
confirm systematic errors leading to analytical biases. For example,
creating a reference standard with the same analytical method
(isomorphic evaluation) as the one generating predictions can lead to
“naive replication” of results comprising both true and false positives
(biased systematic artefacts of a specific analytical method). Isomorphic
evaluations in Omics analyses are anti-conservative by design.

Conflicting biomarker predictions in a single subject

Single-subject studies lack references by design: what happens when
analytical method A and analytical method B disagree on a gene’s
significance? Is gene x really significant? There is a lack of accuracy
framework for evaluating and resolving conflicting signal stemming
from distinct DEG analytics in a single-subject analysis.

Dataset dependency biases
Reusing part of the reference standard data for generating predictions
creates dependencies, an evaluation framework problem observed
more frequently in statistical evaluation of isogenic data [11,12].

In principle, the reference standard should be independent from the predicted bi-
ological signal to evaluate an analytical method. This requires independent datasets
for calculating and evaluating the prediction. We sought to improve the evaluation of
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single-subject studies of transcriptomics-scale gene products by generating unbiased ref-
erence standards. We focused on one framework of single-subject studies: Those with
two transcriptomics-scale measures (one per condition) in one subject, designed to de-
termined altered gene products using the subject as their own control. We hypothesized
that these unbiased reference standards could be achieved by: (i) Using distinct analytical
methods against than the one being evaluated to avoid analytical biases, and (ii) selecting
the most concordant results between multiple analytical methods according to ranges of
fold change expression between two conditions and expression count cutoffs. We propose
a framework, referenceNof1, to resolve the challenges highlighted in Table 1, offering an
alternate, yet related, evaluation framework for improving the data quality in the reference
standard construction. The framework is presented in Figure 1. We demonstrate the referen-
ceNof1 method accuracy with transcriptome simulations and historical transcriptome data
(Section 2). Section 3 discusses the implications and limitations of the current approaches,
while Section 4 details the data and materials and formally introduces the referenceNof1
algorithm. Section 5 concludes the study. The referenceNof1 software is released as an
R package.
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Figure 1. Reference Standard Construction Study Overview. In isogenic paired samples from historical cell lines datasets
exposed to two conditions (condition A in green and B in purple), we first split the paired stimulus-control data into non-
overlapping reference and prediction sets. To maximize biological interpretability and relevance, we run all differentially
expressed genes (DEG) calculations and organize the results by fold change regions and conduct all evaluations. We
introduce the effect-size (Fold change) analysis into the study to mitigate noisy results (i.e., low p-values with negligible
effect sizes) while maximizing biological interpretability and quantify this improvement via accuracy measures (i.e., Area
under the ROC curve) on an exemplar study. Notation: ss = single-subject, ss-DEGi = differentially expressed genes in a
single subject “i”, conditions: A or B, Ak = gene product expression of gene “k” in condition A; Bk = gene product expression
of gene “k” in condition B.
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2. Methods and Materials

The study design is illustrated in Figure 1, and the following subsections detail the
datasets and materials used throughout the study. To improve the state of the art in building
reference standards, the study is designed around isogenic datasets, addressing the issues
in Table 1.

2.1. Datasets

In this study, two different isogenic datasets with biological replicates were used
to evaluate the construction of reference standards, shown in Table 2. Isogenic datasets
comprising more than 5 repeated RNAseq measures on different biological sample (not
technical replicates) in two experimental conditions (>110 samples) are difficult to find
in the literature and were best designed to test our hypothesis. We found two that had
previously served as reference standards in conventional RNASeq analyses requiring
repeated measures, which we use here without repeated measures for the discovery set
(1 sample per condition), and with repeated measures for the validation set.

Table 2. The two isogenic datasets include a single individual’s gene expression dataset with
7 biological replicates while the second dataset has 48 wild-type and mutant biological replicates.

Dataset Samples Genome Size (# Genes) Access to Data

MCF7 Breast Cancer [13] 7 ~20,000 GEO: GSE51403

Yeast [16] 48 ~7000 Github:
bartongroup/profDGE48

The first is an MCF7 breast cancer dataset that contains replicated gene expression
data in isogenic conditions with 7 human biological replicates of MCF7 cells, which were
either treated with 10 nM 17β-estradiol (E2) or cultured as unstimulated controls [13]. The
data contain replicates at various read depths with all analyses being conducted using the
30M read replicates, which are available open source in the Gene Expression Omnibus
repository [17] under the “GSE51403” GEO tag. Normalized and preprocessed data were
downloaded on 21 January 2018. The data were used as obtained with no additional
preprocessing steps to conduct the reproducibility analyses (preprocessing details and
correction details can be found in the original publication) [13], and we randomly selected
four biological replicates (“565–576”,”564–572”,”566–570”,”562–574”) to construct the refer-
ence standard, while the remaining three (“563–577”,”568–575”,”569–571”) were used to
evaluate how well the DEG methods recapture the signal under different reference standard
settings. The second dataset [16] is a yeast study with biological replicates comprised of
48 wild-type (BY4741 strain, WT) or ∆snf2 mutant biological yeast replicates (Saccharomyces
cerevisiae). These included a total of 7126 measured genes, and we replicated following the
author’s data preprocessing framework and conducted our studies using their suggested
42 WT and 44 ∆snf2 ‘clean’ replicates. The preprocessed and normalized data were down-
loaded as prepared by the original authors from their GitHub (Data downloaded from on
27th August 2018. https://github.com/bartongroup/profDGE48) repository.

2.2. Software Environment

All analyses in this study were conducted in the R programming language, using R
3.5.0 [18] on a 2017 MacBook Pro under the macOS High Sierra (10.13.6) OS system. All
code and analyses are freely available in our GitHub repository.

2.3. Differential Expression Software Tools

To evaluate the robustness and reproducibility of various differential gene expression
analyses techniques, we evaluated 5 different cohort-based (cb) RNA-seq tools, found in
Supplementary Materials Table S1 [14,15,19–21]. Since the study was designed to evaluate
the robustness of reference standards, we omitted the single-subject analytics included in

https://github.com/bartongroup/profDGE48
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our prior study (i.e., Mixture Models [7] and iDEG [9]), as these methods are designed
to predict DEGs in isogenic settings, two conditions without replicates (TWCR) design,
rather than produce reference standards in replicated settings. We omitted GFOLD [22]
and similar ranking-based methods as they did not include p-values to establish consistent
cutoffs in our experimental design. Supplementary Table S1 provides the individual
parameter settings for each method.

2.4. Building Effect-Size-Informed Reference Standards

We hypothesize that low effect sizes (i.e., low FC) introduce statistical noise into
the reference standard construction in isogenic conditions, possibly creating biases when
using only p-value informed DEGs. Therefore, to test this hypothesis, we first construct
a reference standard for each method using all the data, and then degrade the dataset by
filtering out genes with effect sizes, in an increasing fashion and evaluate the strength of
the agreement across them. Thus, if we use fold change (FC) as a proxy for effect size
(as calculated by Equation (1)),

Fold Change of gene k = Ak/Bk (1)

where Ak and Bk are the expression of gene product k in condition A and B (Figure 1).
The experimental design was comprised of constructing the reference standard across
different levels of fold change (FC) and evaluating the concordance as a consequence of
the effect size filter. Since we do not distinguish between up- and down-regulated genes,
for down-regulated genes, we take their reciprocal, (FC−1 = 1/FC) when we filter for FC
thresholds. In the manuscript and figures, we will use FC to represent both upregulated
genes fold changes and 1/FC for downregulated genes.

2.5. Low Expression Pre-Filtering

We hypothesize that low gene expression introduces statistical instability when iden-
tifying differentially expressed genes. A common preprocessing approach in differential
gene expression is prefiltering genes [23–25] with low expression as this may increase the
power of the subsequent statistical test. We extend this work into precision medicine by
examining the effects of gene pre-filtering in constructing reference standards in isogenic
conditions.

2.6. Experimental Design

To evaluate the power of combining prefiltering genes based on their effect size
(fold change) and expression level, we considered an array of low-expression cutoffs and
fold-change regions (see Table 3) and selected genes in these windows.

Table 3. Parameter settings in experimental design.

Parameter Values

Fold change window [1–1.1], [1.1–1.2], [1.2–1.3], [1.3–1.5], [1.5–∞]
Low expression cutoff 0, 5, 10, 20, 30, 50

We then used these selected genes to construct reference standards for all the methods
presented in Supplementary Table S1 and evaluated their concordances. To evaluate the
results of the different experimental runs, heatmaps were used to visually compare their
concordances across different experimental runs (see Figures 2 and 3) and the Jaccard Index
to numerically evaluate the agreement between them, where the Jaccard Index is given by
Equation (2).

Jaccard Index =
|M ∩ N|
|M ∪ N| (2)
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Figure 2. Combining fold change and expression level filtering leads to robust, method-agnostic reference standards for
single-subject studies in breast cancer. The grid of heatmaps illustrates that as low-expression genes with small fold changes
across individuals are filtered out, the reference standards constructed agree increasingly more with one another. In the
bottom right, most methods attain a 100% concordance with one another, providing a reliable gold standard. Expression
cutoffs are applied to genes whose average counts across samples fall under the threshold. White cells indicate that no
predictions were made, and therefore the Jaccard Index cannot be calculated. Note: When the JI cannot be calculated due
to the lack of transcripts, the color of the rectangle is white; in addition, FC ranges are symmetric 1/1.1 to 1 and 1 to 1.1,
1/1.2 to 1 and 1 to 1.2, etc. (Legend: In the manuscript and figure, we represent FC for upregulated genes and 1/FC for
downregulated genes).

In our study, these metrics translate to the similarity and dissimilarity between the
DEG calls between method A and method B (i.e., between edgeR and DESeq), which quan-
tifies the biological signal reproducibility between analytical approaches in our reference
standard construction study.

2.7. Optimization of a Reference Standard Using Maximum Jaccard Index Concordance

The parameters in the experimental design were constructed to identify regions
in which the Jaccard Index was maximized. In this grid search, each set of parameter
combinations results in a Concordance Matrix of Jaccard distances (Supplementary Table
S2). From this Jaccard matrix, each method’s median Jaccard Index can be calculated (i.e.,
NOISeq’s median concordance is 0.71 while DEGseq’s is 0.21). One can summarize this
information to understand which methods agree with one another and which differ. To
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construct the most robust reference standard, one needs to identify the optimal parameter
combination (fold change and expression-level thresholds) that maximizes the Jaccard
Index across all reference standards. Therefore, we constructed an R package, referenceNof1,
to enable bioinformaticians to construct the optimal reference standard. If a user inputs a
vector of effect size windows, a vector of minimum value expression cutoffs, and a desired
level of concordance, the
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Figure 3. Combining fold change and expression level filtering leads to robust, method-agnostic reference standards for
single-subject studies in yeast. The grid of heatmaps illustrates that as low-expression genes with small fold changes across
individuals are filtered out, the reference standards constructed provide higher concordance with one another. Given the
larger number of replicates in yeast, it may be that less rigid filters are required to produce reliable, concordant reference
standards. Expression cutoffs in average counts across samples. White cells indicate that no predictions were made, and
therefore the Jaccard Index cannot be calculated. Note: When the Jaccard Index cannot be calculated due to the lack of
transcripts, the color of the rectangle is white; in addition, FC ranges are symmetrical 1/1.1 to 1 and 1–1.1, 1/1.2–1 and 1–1.2,
etc. (Legend: In the manuscript and figure, we represent FC for upregulated genes and 1/FC for downregulated genes).
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Algorithm 1. The referenceNof1 algorithm pseudocode to construct an optimized and unbiased reference standard.

Variable Description

Inputs
FC A list of fold change thresholds

Cutoffs A list of expression thresholds
Target A minimum median Jaccard index to attain

Steps

For genes in region Ri using Cutoffi and FCi, do
For method
∈ {edgeR, DEGseq, DESeq2, NOISeq} do
Identify set of differentially expressed genes
End for
Calculate pairwise Jaccard Index (JI) for all (M,N)
pairs of methods:

J I(M,N),Ri
= |M∪N|
|M∩N|

Calculate median Jaccard Index

J IRi,Med = median
(

J I(M,N),Ri

)
If (J IRi,Med ≥ Target)
Return Cutoff* = Cutoffi, FC* = FCi
Else
Update FC, Cutoff parameters
End for
If (Target attained)
Return Cutoff*, FC*
Else
Print No threshold achieved target Jaccard Index

The referenceNof1 algorithm requires a user to input the FC and expression cutoff filters for it to then identify the optimal region for
producing the reference standard. For each pair of FC-region and expression cutoff combination, it calculates each method’s list of
differentially expressed genes (DEGs), and then for each DEG list it calculates the Jaccard Index as a set-theoretic pairwise similarity
measure. After calculating all pairwise Jaccard indices, it calculates the median for each region. If a parameter combination attains
the desired median Jaccard Index, an early stopping rule is implemented, and the optimal parameter combination is returned.
Otherwise, it continues the search until the target Jaccard Index is attained or the search through the parameter space is complete.
(Legend: In the manuscript and figure, we represent FC for upregulated genes and 1/FC for downregulated genes.”)

2.8. Comparing the Proposed Reference Standard Optimization with a Single Heteromorphic One

To illustrate the benefits of creating more robust reference standards, we conducted an
exemplar study using DESeq. As shown in Figure 1, the analysis consisted of constructing
a reference standard using the intersection of all DEG calls by edgeR, NOISeq, DEGseq,
and DESeq2 using four MCF7 samples in two conditions (8 samples), while the prediction
of single-subject DEGs(ss-DEGs) was conducted on independent sample pairs three times
using DESeq (3 independent pairs). Note that the prediction method is not part of the
reference standard construction to mitigate for analytic biases (Table 1). The analysis
consists of constructing the reference standard first on the entire set of MCF7 gene product
counts and second on the optimal region of concordance as identified by the Jaccard Indices.
Then, using this robust reference standard identified by referenceNof1, an exemplar analysis
in a hold-out pair of single-subject paired-transcriptomes, DESeq is used to identify altered
genes and the results are compared against the reference standard. This process is repeated
three times, once on each of the three hold-out sets (sss-DEGs). The average results across
all three hold-out sets are presented in Table 3. For comparison, the results are shown for
an equivalent DESeq analysis on the full, unfiltered hold-out sets.

2.9. ReferenceNof1 R Package

The code SamirRachidZaim/referenceNof1_study was re-packaged into a repro-
ducible and shareable R-package format, available for installation on GitHub under the
following repository: SamirRachidZaim/referenceNof1.
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3. Results
3.1. Fold Change Region Analysis

We utilize a previously designed dataset comprising of repeated biological assays
and transcriptomes of MCF7 breast cancer cell lines in two conditions (exposure or no
exposure to estrogen). This is used to derive a reference standard to evaluate analytical
methods deriving DEGs from one sample in each condition [4,12]. Concordances between
conventional RNA-seq analytical methods for repeated measurements (Methods) applied
to this MCF7 dataset were calculated and shown in Table 4. The calculated differentially
expressed genes (DEGs) are filtered at different fold changes (FC). In low fold change re-
gions, the highest agreement between analytical methods reached 50%, providing low trust
across the competing signals detected across analytical methods. The analytical methods
are not validating each other’s discoveries. However, as the FC effect size increases, the
increasing FC regions demonstrate greater agreement across analytical methods, resulting
in FC conditions enabling the evaluation of one method against another—eliminating
isomorphic analytical biases. Table 4 numerically illustrates this trend, noting that the
Jaccard Indices for the first pair of fold change regions is mostly near or at zero, except for
a few combinations. In the absence of a framework or analytical method for resolving this
conflict of signal, any study that chooses a particular analytical method risks to detect a
non-robust signal beyond naïve reproducibility. At higher fold change regions above 1.2,
there is no one “best” fold change region, supporting the idea that filtering FC ≥ 1.3 may
provide the most reproducible results from method to method for this specific dataset.

Table 4. Concordance between analytic methods of RNA sequencing according to ranges of gene expression fold changes
(FC) between two conditions. The low concordance observed in most FC ranges illustrate the “analytical bias of methods”
described in Table 1. Indeed, if the same method is used for prediction in one dataset and validation in a distinct dataset
(isomorphic evaluation), the evaluation is considered anticonservative as it measures the reproducibility of true positive
and false positive results (analytical biases) rather than a measure of accuracy. In addition, the table results illustrate the
difficulty to create a conservative reference standard for which the analytical method would be independent from the
predictive method (heteromorphic evaluation); there is no single method that would be the best choice “a priori” to evaluate
a new method. Legend: Since the Jaccard Index is symmetric, for any two techniques, we present the Jaccard Indices for the

(
5
2

) = 10 total possible pairwise combinations between the five analytical methods evaluated across the different fold

change regions. DEGs were calculated using five repeated samples of MCF7 breast cancer cell lines exposed to estrogen and
five unexposed samples. The high concordance for each pairwise comparison is bolded (Jaccard Index > 0.6) and shown in a
larger font. (Legend: In the manuscript and figure, we represent FC for upregulated genes and 1/FC for downregulated
genes).

Analytical
Method A

Analytical
Method B

1 < FC < 1.1
(~85 DEGs)

1.1 < FC < 1.2
(~175 DEGs)

1.2 < FC < 1.3
(~700 DEGs)

1.3 < FC < 1.5
(~1100 DEGs)

1.5 < FC < ∞
(~365 DEGs)

NOISeq edgeR 0.500 0.333 0.885 0.819 0.631
NOISeq DESeq 0 0 0.814 0.747 0.586
NOISeq DESeq2 0.005 0.002 0.311 0.436 0.372
NOISeq DEGseq 0 0 0.355 0.569 0.672
edgeR DESeq 0 0 0.902 0.868 0.795
edgeR DESeq2 0.002 0 0.329 0.468 0.515
edgeR DEGseq 0 0 0.387 0.558 0.658
DESeq DESeq2 0 0.076 0.332 0.457 0.489
DESeq DEGseq 0 0.285 0.415 0.555 0.661

DESeq2 DEGseq 0.005 0.135 0.452 0.654 0.450

3.2. Combining Fold Change and Low-Expression Noise Reduction in Reference Standards

Combining gene expression levels (minimum expression cutoff; Figures 2 and 3) and
effect-size prefiltering results in a quasi-linear improvement in agreement. The experi-
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mental design allowed us to examine the marginal effects of increasing cutoffs for gene
expression and effect size (see Figure 2 for Breast Cancer and Figure 3 in Yeast).

In the breast cancer study, the reference standards were constructed using four repli-
cates. The bottom right portion of concordances in Figure 2 illustrates how all the analytical
methods attained strong concordances due to the strictest thresholds (at least > 75% of all
identified DEGs).

In the yeast study, smaller effect size thresholds were required for analytical methods
to have complete agreement (see Figure 3). The methods appear to agree and produce con-
cordant reference standards after imposing moderate (at least on our scale of parameters)
fold change and expression cutoff values. It suggests perhaps that these analyses might
benefit from developing a self-learning algorithm that finds the optimal cutoff values after
conducting a grid search on the parameter space.

3.3. DESeq Example Analysis with Robust Reference Standards

Table 5 illustrates the calculated single-subject DEGs (ss-DEGs) from two samples
(one in each condition, without replicate) from MCF breast cancer cells using DESeq. The
discovered DEGs were evaluated against either a reference standard constructed from
the intersection of DESeq2, edgeR, NOISeq, and DEGseq (Table 5, top row) or using the
optimized reference standard using the proposed referenceNof1 method (Table 5, bottom
row). This experimental design using isogenic cells lines with replicates in two conditions
enables validation of single-subject transcriptome analysis methods. This evaluation
addresses the limitations highlighted in Table 1. The results in Table 5 indicate a substantial
increase in accuracy in single-subject studies using single-subject DESeq taking one sample
in each of the two MCF7 cell lines conditions without replication (average recall and
precision shown as we obtained three measures of each for every reference standard). As
shown in Figure 1, we took three distinct pairs of estrogen exposed and unexposed samples
and calculated, for each pair, the ss-DEGs using DESeq as an exemplar method being
applied to a clinical sample. Prior studies using DESeq in single-subject studies indicate a
conservative prediction approach, producing few but highly precise DEG calls [12,14,15].
These results indicate a consistent operational characteristic as well as an improved region
of algorithm accuracy.

Table 5. Single-subject DEGs predictions evaluated by conventional methods and refereneNof1. In order to simulate
transcriptomic data from a single patient, single-subject DEGs were calculated by the DESeq method from two samples
(MCF7 cell vs. MCF7 exposed to estrogen) and evaluated against two reference standards derived from Y samples in each
condition (2Y samples total). The two reference standards constructed in this exemplary study illustrate the increases in
accuracy provided by the proposed referenceNof1 method to increase the agreement between DEGs methods used for as a
reference and mitigate analytical biases from isomorphic evaluations. The optimal region identified by the referenceNof1
algorithm resulted in a DESeq prediction set with a substantially higher precision with a slightly higher recall. (Legend: In
the manuscript and figure, we represent FC for upregulated genes and 1/FC for downregulated genes).

Predictions of ss-DEGs Calculate by
DESeq

Reference Standard Construction
References

True DEGs (False= Remaining
Transcripts)

Average Precision Average Recall

Intersection of DEGs between methods * 522 (16,625) 0.57 0.08

Majority vote of DEGs between methods * 1424 (15,723) 0.77 0.04

referenceNof1 applied to intersection of
DEGs * between methods 165 (16,982) 0.70 0.12

referenceNof1 applied to majority vote of
DEGs * between methods 406 (16,741) 0.85 0.06

* calculated by DESeq2, EdgeR, NOISeq, DEGseq NOT using DESeq to avoid analytical biases.
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4. Discussion, Limitations, and Future Studies
4.1. Discussion

We and others have proposed that while identifying altered DNA is possible us-
ing reference standards derived from populations, determining altered gene products
(e.g., transcriptomes, proteomes and metabolomes) are better determined in isogenic condi-
tions [2]. Indeed, identical twins sharing the same DNA but living in diametrically different
environments (polar vs. artic) and having different dietary, sleeping, and exercise regimen
may have normal, yet quite distinct, gene products in their cells. This motivated us and
others to design analytical methods to determine personalized differentially expressed
genes (DEGs) from two samples without replicates, each taken in a different condition.
These approaches have been applied for (i) comparing a cancer transcriptome to a paired
control tissue [6], and (ii) comparing peripheral blood mononucleocytes of a single subject
either taken in two conditions (e.g., before and during therapy to predict response [26],
separated in two petri dishes with one experimentally exposed to a virus vs. a control
to determine ulterior hospitalizations in pediatric asthmatic subjects [26,27], etc.). While
these single-subject study designs are economical and more informative than a single
measure of the transcriptome, they remain difficult to evaluate. We have previously shown
that these single-subject DEGs analytics designed for two paired samples can be better
evaluated by using previous cell line datasets comprising of multiple replicates across
both conditions. However, most conventional methods generated a conflicting discordant
reference standard, motivating the current study.

Constructing a robust and reproducible reference standard should not be confounded
with identifying or predicting DEGs for a gene-expression classifier. Since gold standards on
an Omics scale are truly only available in simulation studies, we propose to call standards
derived from Omics-scale analyses of biologic datasets reference standards. Therefore,
a novel framework is required to address the difficulties to generate a reliable reference
standard as highlighted in Table 1. The proposed framework provides an alternative
reference standard construction that is robust against violations of statistical assumptions,
resolves competing signal across analytical methods, produces accuracy beyond naïve
reproducibility, and serves as a starting point for expanding robust reference standards
in the other ‘omics. This proof-of-concept with transcriptomics provides encouraging
preliminary results.

The modus operandi of developing a reference standard consisted of using a tech-
nique to build a reference standard (i.e, DEGseq) and measuring it against itself via some
criterion (i.e., AUC). This provides naïve reproducibility that does not generalize across
methods. Our proposed framework, referenceNof1, generates an unbiased and robust ref-
erence standard using concordance between heterogenic methods using transcripts. We
note how filtering out noise (i.e., genes with small fold change) can have a drastic effect
for improving on how to build reference standards as well as provides a framework that
quantifies these differences and provides guidance on how to construct the reference stan-
dard for a biomarker analysis independent of the used technique. In addition, filtering
out genes with low expression [23–25] improves the power and removes the noise in
bioinformatics, therefore ensuring that uniform cutoffs across techniques improve their
concordance, thus increasing their reliability. In addition, removing low expression and
low effect-size genes may lose many genes, requiring one to control for false negative
rates. This is where an ensemble-like approach (i.e., referenceNof1) controls for indi-
vidual technique’s false negatives, as a “majority-vote” rule is robust to individual false
negatives as long as the techniques can identify low effect-size genes. However, a more
systemic approach is necessary when all techniques compared result in false negatives.
Constructing methods-agnostic reference standards will only enable the community to
continue improving the state of reproducibility in bioinformatics data analysis. Clearly,
the solution range is dataset-specific as shown by the different concordances of the same
methods applied to two different datasets (Figures 2 and 3). This study suggests that
a “stratification data analysis model” could be applied to determine the optimal gene
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expression cutoff required to obtain the desired concordance for each range of fold changes
and the minimal fold change required to include results in the reference standard. For
example, if a concordance of Jaccard Index > 75% for a simple majority of DEG methods
is considered sufficient for generating a reference standard, then Figure 2 shows that an
expression > 30 and FC > 1.3 meet these criteria. If the criteria were reduced to Jaccard
Index > 50% and a simple majority vote, then the reference standard comprises the DEGs
discovered at the union of [expression cutoff > 0 and 1.3 < FC < 1.5] and [expression cutoff
> 30 and FC > 1.5]. Reference standards built for a single subject are isogenic by design.
Since most of the publicly available human transcriptome datasets consist of measures
for multiple subjects (heterogenic), we conducted the validation of our proposed methods
using multiple measures in two experimental isogenic conditions in cell lines as proxy
for a single-subject study. The example study with DESeq illustrates the added utility in
creating robust reference standards. We have previously documented that some DEGs
methods designed for comparisons requiring repeated measures of isogenic samples or
many heterogeneric samples for each condition claim to be applicable to single-subject
analyses of transcriptome methods, yet none had documented their validation [2]. Sub-
sequently, Schurch et al. [16] and Liu et al. [13] validated NOISeq, DEGseq, DESeq2, and
EdgeR using replicates of isogenic samples in two conditions conducted in MCF7 and
yeast data, respectively; however, their evaluations were conducted using anticonservative
designs generating analytical biases due to isomorphic evaluations (Table 1) as shown in
our recent study [12].

4.2. Limitations and Future Studies

The referenceNof1 algorithm provides tools to create robust reference standards in
transcriptomic studies, however there are a number of opportunities to improve and
extend this research. Three areas have been identified to extend the research and utility of
referenceNof 1 and are discussed below.

The first is to create a self-learning algorithm to expand the search space to identify
global or local optimal parameters, rather than search strictly within the user’s predefined
grid-search. As shown in Figures 2 and 3, stricter cutoffs resulted in higher concordances in
the breast cancer cell line dataset, whereas in the yeast dataset, the concordances followed
a parabolic behavior, with initial increases and then a decrease in concordances. This
limits the users to identify optimal solutions within their “user-defined” search space and
suggests that there is not necessarily a universal effect-size “cutoff” after which meth-
ods agree, but rather data-driven fold change (FC) regions in which the agreements are
maximized. Since these FC regions need to be identified on each dataset, we posit that
a self-learning algorithm can be implemented to identify high-agreement regions with
the goal of identifying the smallest thresholds that attain the maximal Jaccard Index to
preserve the majority of the data.

Preliminary work in referenceNof1 has been extended in this direction with future
studies focused on fine-tuning and refining the approach to having a self-learning algorithm
optimize the operating space to better guarantee biological validity for the statistical results.
Currently, the search is designed to identify the minimal set of operating parameters to
attain a certain Jaccard Index concordance using the intersection of techniques. This can
be combined with including a “majority-voting” rule and generalize the voting scheme to
allow greater flexibility.

Since signal can be unstable in single-subject studies, the second direction for future
studies should consider incorporating additional scales of biology offers an opportunity to
incorporate ontologies to stabilize the signal using pathways. As shown in [28], biological
signal in heterogenic subjects can be unstable and expressed inconsistently across subjects,
suggesting that alternatively it might be more effective to conduct pathway-level analyses
and train pathway-level classifiers. Therefore, another direction to extend this strategy
is to improve and refine the state of pathway-level reference standards by incorporating
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ontologies like Gene Ontology [29] and other network-analysis tools into building a robust
and reproducible reference standard.

Finally, the third direction is to extend referenceNof1 to single-subject studies of
biomolecular pathway dynamics and into the other ‘omics. The current manuscript presents
a framework for robust reference standards in transcriptomics. However, we and others
have previously demonstrated the utility of single-subject analytics of gene products at
‘omics scale. For example, we have shown how to compare treated vs untreated peripheral
blood mononucleocytes (PBMCs) using single-subject transcriptome analyses designs [26],
as well as contrasting experimentally stimulated vs unstimulated PBMCs of a subject ex
vivo using rhinovirus to predict hospitalization in asthmatic subjects [27], or comparing
cancer vs. adjacent control tissue of a subject predicting response to therapy [6]. Therefore,
future studies should consider extending the referenceNof1 framework into the other ‘omics
in order to further enable and strengthen single-subject studies across the ‘omics.

5. Conclusions

Reproducibility and accuracy are not only central to Omics studies but to precision
medicine. Improving existing techniques and frameworks in single-subject studies empow-
ers scientists to separate clinically relevant biomarkers from statistical artefacts. Transform-
ing these initiatives into open-source software improves reproducibility and furthers the
space of open precision medicine. Prior studies [2] illustrate how the unique challenges of
single-subject analyses of transcriptomes in the absence of replicates remain challenging.
However, we posit that an improvement in evaluation methods, as proposed here, pro-
vides the rigorous framework for assessing objectively ulterior proposed improvements.
In addition, pathway-level single-subject studies of transcriptomes have been shown more
accurate than gene product level ones [3], suggesting potential future pathway-level ap-
plications of the methods we proposed. This manuscript highlights four types of biases
(Table 1) that confound results in both conventional analyses and single-subject studies’
clinical translation. The proposed referenceNof1, complementary to [12], follows a suite
of recent work [9,12,28] in which we seek to address these challenges, resulting in a new
framework for creating robust reference standards. We proposed, tested, and developed an
open-source software using a single strategy that reduces two additional biases: (i) Statisti-
cal distribution bias and (ii) systematic bias from isomorphic evaluations (using the same
analysis in the prediction and validation sets). Despite the specific challenges posed in
single-subject studies, these advances create new opportunities to combine single-subject
and conventional cohort studies. In this study, we demonstrated the utility of constructing
more robust reference standards in single-subject transcriptomic studies. There are multiple
directions to conduct future studies. One opportunity is a follow-up study that will extend
these methods by incorporating ontologies to transform and aggregate gene-products into
pathways and gene sets, which can construct pathway-based robust reference standards.
An alternate avenue can be pursued by extending these tools into other ‘omics (i.e., pro-
teome or metabolome). Finally, future studies will include a self-learning grid-search that
identifies the optimal reference standard parameters. This manuscript expands upon recent
work to addresses existing knowledge gaps and challenges in the single-subject domain
to bring our tools, technology, and analyses closer to delivering the promise made by
precision medicine: “the right treatment, for the right patient, at the right time.”
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Mathematical Notation

Notation & Variable Variable Description Equation

Ak and Bk
Gene product expression of gene k
in conditions A and B

Figure 1

FC
Fold change: we represent FC for
upregulated genes and 1/FC for
downregulated genes.”)

Equation (1)

Jaccard Index = |M∩N|
|M∪N|

Jaccard index is the ratio of
significant gene products in
common between results derived
from analytical methods M and N
divided by the union of these sets

Equation (2)

M ∩ N Intersection of sets M and N Equation (2)
M ∪ N Union of M and N Equation (2)
|M| Cardinality or size of set M Equation (2)

Ri

Region i, portion of the
transcriptome resulting from the
filters and cutoffs selected in
referenceNof1

Algorithm 1

JI (M,N),Ri

The Jaccard index between
analytics methods M and N for
genes in region Ri

Algorithm 1

Acronyms and Abbreviations

Abbreviation Name
DEGs Differentially expressed genes
SSS single-subject studies

FC
Fold change for upregulated genes and 1/Fold
change for downregulated genes

NHST Null Hypothesis Significance Testing
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16. Schurch, N.J.; Schofield, P.; Gierliński, M.; Cole, C.; Sherstnev, A.; Singh, V.; Wrobel, N.; Gharbi, K.; Simpson, G.G.; Owen-Hughes,

T.; et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you
use? RNA 2016, 22, 839–851. [CrossRef] [PubMed]

17. Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.
Nucleic Acids Res. 2002, 30, 207–210. [CrossRef]

18. Ihaka, R.; Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996, 5, 299–314.
19. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene

Expression Data. Bioinformatics 2009, 26, 139–140. [CrossRef]
20. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome

Biol. 2014, 15, 550. [CrossRef]
21. Tarazona, S.; García, F.; Ferrer, A.; Dopazo, J.; Conesa, A. NOIseq: A RNA-seq differential expression method robust for

sequencing depth biases. EMBnet J. 2011, 17, 18–19. [CrossRef]
22. Feng, J.; Meyer, C.A.; Wang, Q.; Liu, J.S.; Shirley Liu, X.; Zhang, Y. GFOLD: A generalized fold change for ranking differentially

expressed genes from RNA-seq data. Bioinformatics 2012, 28, 2782–2788. [CrossRef]
23. Sha, Y.; Phan, J.H.; Wang, M.D. Effect of low-expression gene filtering on detection of differentially expressed genes in RNA-seq

data. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Milan, Italy, 25–29 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 6461–6464.

24. Hackstadt, A.J.; Hess, A.M. Filtering for increased power for microarray data analysis. BMC Bioinform. 2009, 10, 11. [CrossRef]
25. Bourgon, R.; Gentleman, R.; Huber, W. Independent filtering increases detection power for high-throughput experiments. Proc.

Natl. Acad. Sci. USA 2010, 107, 9546–9551. [CrossRef] [PubMed]
26. Gardeux, V.; Bosco, A.; Li, J.; Halonen, M.J.; Jackson, D.; Martinez, F.D.; Lussier, Y.A. Towards a PBMC “virogram assay” for

precision medicine: Concordance between ex vivo and in vivo viral infection transcriptomes. J. Biomed. Inform. 2015, 55, 94–103.
[CrossRef] [PubMed]

27. Gardeux, V.; Berghout, J.; Achour, I.; Schissler, A.G.; Li, Q.; Kenost, C.; Li, J.; Shang, Y.; Bosco, A.; Saner, D.; et al. A genome-by-
environment interaction classifier for precision medicine: Personal transcriptome response to rhinovirus identifies children prone
to asthma exacerbations. J. Am. Med. Inform. Assoc. 2017, 24, 1116–1126. [CrossRef] [PubMed]

28. Zaim, S.R.; Li, Q.; Schissler, A.G.; Lussier, Y.A. Emergence of pathway-level composite biomarkers from converging gene set
signals of heterogeneous transcriptomic responses. In Proceedings of the Pacific Symposium on Biocomputing, Kohala Coast, HI,
USA, 3–7 January 2018; World Scientific: Singapore, 2018; pp. 484–495.

29. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T. Gene
ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25. [CrossRef] [PubMed]

http://doi.org/10.1186/s12920-017-0263-4
http://doi.org/10.1136/amiajnl-2013-002519
http://doi.org/10.1080/00031305.2018.1527253
http://doi.org/10.1093/bioinformatics/btt688
http://doi.org/10.1093/bioinformatics/btp612
http://www.ncbi.nlm.nih.gov/pubmed/19855105
http://doi.org/10.1261/rna.053959.115
http://www.ncbi.nlm.nih.gov/pubmed/27022035
http://doi.org/10.1093/nar/30.1.207
http://doi.org/10.1093/bioinformatics/btp616
http://doi.org/10.1186/s13059-014-0550-8
http://doi.org/10.14806/ej.17.B.265
http://doi.org/10.1093/bioinformatics/bts515
http://doi.org/10.1186/1471-2105-10-11
http://doi.org/10.1073/pnas.0914005107
http://www.ncbi.nlm.nih.gov/pubmed/20460310
http://doi.org/10.1016/j.jbi.2015.03.003
http://www.ncbi.nlm.nih.gov/pubmed/25797143
http://doi.org/10.1093/jamia/ocx069
http://www.ncbi.nlm.nih.gov/pubmed/29016970
http://doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651

	Introduction 
	Methods and Materials 
	Datasets 
	Software Environment 
	Differential Expression Software Tools 
	Building Effect-Size-Informed Reference Standards 
	Low Expression Pre-Filtering 
	Experimental Design 
	Optimization of a Reference Standard Using Maximum Jaccard Index Concordance 
	Comparing the Proposed Reference Standard Optimization with a Single Heteromorphic One 
	ReferenceNof1 R Package 

	Results 
	Fold Change Region Analysis 
	Combining Fold Change and Low-Expression Noise Reduction in Reference Standards 
	DESeq Example Analysis with Robust Reference Standards 

	Discussion, Limitations, and Future Studies 
	Discussion 
	Limitations and Future Studies 

	Conclusions 
	References

